Next: Function Multiversioning, Previous: Bound member functions, Up: C++ Extensions [Contents][Index]
Some attributes only make sense for C++ programs.
abi_tag ("tag", ...)
The abi_tag
attribute can be applied to a function, variable, or class
declaration. It modifies the mangled name of the entity to
incorporate the tag name, in order to distinguish the function or
class from an earlier version with a different ABI; perhaps the class
has changed size, or the function has a different return type that is
not encoded in the mangled name.
The attribute can also be applied to an inline namespace, but does not
affect the mangled name of the namespace; in this case it is only used
for -Wabi-tag
warnings and automatic tagging of functions and
variables. Tagging inline namespaces is generally preferable to
tagging individual declarations, but the latter is sometimes
necessary, such as when only certain members of a class need to be
tagged.
The argument can be a list of strings of arbitrary length. The strings are sorted on output, so the order of the list is unimportant.
A redeclaration of an entity must not add new ABI tags, since doing so would change the mangled name.
The ABI tags apply to a name, so all instantiations and specializations of a template have the same tags. The attribute will be ignored if applied to an explicit specialization or instantiation.
The -Wabi-tag
flag enables a warning about a class which does
not have all the ABI tags used by its subobjects and virtual functions; for users with code
that needs to coexist with an earlier ABI, using this option can help
to find all affected types that need to be tagged.
When a type involving an ABI tag is used as the type of a variable or
return type of a function where that tag is not already present in the
signature of the function, the tag is automatically applied to the
variable or function. -Wabi-tag
also warns about this
situation; this warning can be avoided by explicitly tagging the
variable or function or moving it into a tagged inline namespace.
init_priority (priority)
In Standard C++, objects defined at namespace scope are guaranteed to be
initialized in an order in strict accordance with that of their definitions
in a given translation unit. No guarantee is made for initializations
across translation units. However, GNU C++ allows users to control the
order of initialization of objects defined at namespace scope with the
init_priority
attribute by specifying a relative priority
,
a constant integral expression currently bounded between 101 and 65535
inclusive. Lower numbers indicate a higher priority.
In the following example, A
would normally be created before
B
, but the init_priority
attribute reverses that order:
Some_Class A __attribute__ ((init_priority (2000))); Some_Class B __attribute__ ((init_priority (543)));
Note that the particular values of priority
do not matter; only their
relative ordering.
warn_unused
For C++ types with non-trivial constructors and/or destructors it is impossible for the compiler to determine whether a variable of this type is truly unused if it is not referenced. This type attribute informs the compiler that variables of this type should be warned about if they appear to be unused, just like variables of fundamental types.
This attribute is appropriate for types which just represent a value,
such as std::string
; it is not appropriate for types which
control a resource, such as std::lock_guard
.
This attribute is also accepted in C, but it is unnecessary because C does not have constructors or destructors.
Next: Function Multiversioning, Previous: Bound member functions, Up: C++ Extensions [Contents][Index]